TLDR
1 Media Extended ****https://mx.pkmer.net/zh-CN
2 2nd Brain https://www.youtube.com/watch?v=l5NhhE8qOBA
3 MarkUp.io https://app.markup.io/
Content
Contributed by @HardwayLinka
计算机领域的知识覆盖面很广并且更新速度很快,因此保持终身学习的习惯很重要。但在日常开发和学习的过程中,我们获取知识的来源相对复杂且细碎。有成百上千页的文档手册,也有寥寥数语的博客,甚至闲暇时手机上划过的某则新闻和公众号都有可能包含我们感兴趣的知识。因此,如何利用现有的各类工具,形成一套适合自己的学习工作流,将不同来源的知识碎片整合进属于自己的知识库,方便之后的查阅与复习,就显得尤为重要。经过两年工作之余的学习后,我磨合出了以下学习工作流:

底层核心逻辑
一开始我学习新知识时会参考中文博客,但在代码实践时往往会发现漏洞和bug。我逐渐意识到我参考的信息可能是错误的,毕竟发博客的门槛低,文章可信度不高,于是我开始查阅一些相关的中文书籍。
中文书籍的确是比较全面且系统地讲解了知识点,但众所周知,计算机技术更迭迅速,又因为老美在 CS 方面一直都是灯塔,所以一般中文书籍里的内容会滞后于当前最新的知识,导致我跟着中文书籍实践会出现软件版本差异的问题。这时我开始意识到一手信息的重要性,有些中文书籍是翻译英文书籍的,一般翻译一本书也要一两年,这会导致信息传递的延迟,还有就是翻译的过程中信息会有损失。如果一本中文书籍不是翻译的呢,那么它大概率也参考了其他书籍,参考的过程会带有对英文原著中语义理解的偏差。
于是我就顺其自然地开始翻阅英文书籍。不得不说,英文书籍内容的质量整体是比中文书籍高的。后来随着学习的层层深入,以知识的时效性和完整性出发,我发现 源代码 > 官方文档 > 英文书籍 > 英文博客 > 中文博客,最后我得出了一张 信息损失图:
虽然一手信息很重要,但后面的 N 手信息并非一无是处,因为这 N 手资料里包含了作者对源知识的转化——例如基于某种逻辑的梳理(流程图、思维导图等)或是一些自己的理解(对源知识的抽象、类比、延伸到其他知识点),这些转化可以帮助我们更快地掌握和巩固知识的核心内容,就如同初高中学习时使用的辅导书。 此外,学习的过程中和别人的交流十分重要,这些 N 手信息同时起了和其他作者交流的作用,让我们能采百家之长。所以这提示我们学习一个知识点时先尽量选择质量更高的,信息损失较少的信息源,同时不妨参考多个信息源,让自己的理解更加全面准确。
现实工作生活中的学习很难像学校里一样围绕某个单一知识点由浅入深,经常会在学习过程中涉及到其他知识点,比如一些新的专有名词,一篇没有读过的经典论文,一段未曾接触过的代码等等。这就要求我们勤于思考,刨根究底地“递归”学习,给多个知识点之间建立联系。
选择合适的笔记软件
工作流的骨架围绕 单个知识点多参考源,勤于提问给多个知识点之间建立联系 的底层核心逻辑建立。我们写论文其实就是遵循这个底层逻辑的。论文一般会有脚注去解释一些关键字,并且论文末尾会有多个参考的来源,但是我们平时写笔记会随意得多,因此需要更灵活的方式。
平时写代码习惯在 IDE 里一键跳转,把相关的函数和实现很好地联系在了一起。你也许会想,如果笔记也能像代码那样可以跳转就好了。现在市面上 双链笔记软件 就可以很好地解决这一痛点,例如 Roam Research、Logseq、Notion 和 Obsidian。Roam Research 和 Logseq 都是基于大纲结构的笔记软件,而 大纲结构 是劝退我使用这两款软件的原因。一是 大纲结构 做笔记容易使文章纵向篇幅太长,二是如果嵌套结构过多会占横向的篇幅。Notion 页面打开慢,弃之。最终我选择了 Obsidian,原因如下: